![]() |
學(xué)校地址:湖南省 長沙市 雨花區(qū) 車站南路紅花坡路口 |
![]() |
學(xué)校地址:湖南省 長沙市 雨花區(qū) 車站南路紅花坡路口 |
基于神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)狀態(tài)估計①
韓富春 王娟娟
(太原理工大學(xué)電氣與動力工程學(xué)院 太原 030024)
摘 要 本文以Tank和Hopfield神經(jīng)網(wǎng)絡(luò)為基礎(chǔ),建立了一種由主從網(wǎng)絡(luò)構(gòu)成的電力系統(tǒng)狀態(tài)估計神經(jīng)網(wǎng)絡(luò)模型。理論分析和實例模擬結(jié)果表明:該網(wǎng)絡(luò)是穩(wěn)定的,該方法是可行有效的。
關(guān)鍵詞 狀態(tài)估計 電力系統(tǒng) 神經(jīng)網(wǎng)絡(luò)
1 INTRODUCTION
Among the current state estimators,due togood estimation qualities and astringency,weightedleast estimator is a classical algorithm and an aca-demic basis.Butit also has some shortcomingssuchas the calculation of matrices.The paper applies aneural network modelto solve the real-time leastsquares(RLS)problem.Theoretical analysis andsimulations prove that this network is very suitableto solve this kind of problem and has greatly im-proved on the traditionalpower state estimation al-gorithm.
2 A MODEL OF WEIGHTED LEAST SQUARESALOGORITHM
The observation equation ofpower systemstate estimation is nonlinear and can be linear as:
z=Hx+v (1)
where x isan dimension state vector;z isa mdimen-sion measurement vector;v is a measurement errorvector,which is normalized as:H is a m×n dimension observation matrix.Rank[H]=n.Its elements are decided by the structureof power system and the configuration of meteringsystem.In general case,H can act as constant be-cause its change is minute in every iteration.
The observation function applying weightedleastsquares algorithmis:
where R-1 is weight,Δz is the difference betweenthe measurementand the value ofthe correspondingmeasurementfunction.Eq.(2)is expressed in a vec-
tor form:
3 THEREALIZATION OFRLSALGO-RITHM USINGANEURALNETWORK
According to the reference[3]that a energy function was used to research the stability of a feed-back neuralnetwork and simulation electroniccircuitcould realize its circuitmodel.In reference[1],thereis a network that comprised of a main and a sub-sidiary network,showed as the Figure 1.The paperapplies the network to power system state estima-tion successfully.The main and the subsidiary neu-rons are connected with each other.The left mainnetwork has n neurons,every neuron is modeled asan amplifier,and the relation ofitsinput and outputis nonlinear.It has input capacitance Ci and resis-tance Ri.vi(t)and ui(t)are the i-th neuron output and input voltage.g(u)is a degressive function.
[1] [2] [3] 下一頁
湖南省陽光電子技術(shù)學(xué)校常年面向全國招生.安置就業(yè)。考試合格頒發(fā)全國通用權(quán)威證書:《中華人民共和國職業(yè)資格證》 、《電工證》 、《焊工證》 。采用我校多年來獨創(chuàng)的“模塊教學(xué)法”,理論與實踐相結(jié)合、原理+圖紙+機器三位一體的教學(xué)模式,半天理論,半天實踐,通俗易懂,確保無任何基礎(chǔ)者也能全面掌握維修技能、成為同行業(yè)中的佼佼者。工作(一期不會,免費學(xué)會為止)。